
746 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 1998

A Unified Data Model for Representing
Multimedia, Timeline, and Simulation Data

John David N. Dionisio and Alfonso F. Cárdenas

Abstract—This paper describes a unified data model that represents multimedia, timeline, and simulation data utilizing a single set
of related data modeling constructs. A uniform model for multimedia types structures image, sound, video, and long text data in a
consistent way, giving multimedia schemas and queries a degree of data independence even for these complex data types.
Information that possesses an intrinsic temporal element can all be represented using a construct called a stream. Streams can be
aggregated into parallel multistreams, thus providing a structure for viewing multiple sets of time-based information. The unified
stream construct permits real-time measurements, numerical simulation data, and visualizations of that data to be aggregated and
manipulated using the same set of operators. Prototypes based on the model have been implemented for two medical application
domains: thoracic oncology and thermal ablation therapy of brain tumors. Sample schemas, queries, and screenshots from these
domains are provided. Finally, a set of examples is included for an accompanying visual query language discussed in detail in
another document.

Index Terms—Multimedia database management, multimedia data model, timeline, simulation, visual data modeling, multimedia
data streams, temporal databases, visual querying, multimedia querying, medical multimedia databases.

——————————���F���——————————

1 INTRODUCTION

HIS paper describes a unified data model that we shall
call M for representing multimedia, timeline, and simula-
tion data. Our current research work in the Knowledge-

Based Multimedia Medical Distributed Database (KMeD)
project at UCLA has identified a number of data modeling
needs that come from different application domains. Our
investigation concluded that they can all be served using
a single construct called a stream. Streams have been de-
scribed in the literature, although within a narrower scope
[25], [4], [39]. This paper describes how we have been able
to generalize the time-based stream model so that it can
fulfill the requirements of such diverse domains as simu-
lation and validation, medical timelines, and multimedia
visualization.

1.1 Background
Recent developments in scientific databases have identified
new data modeling requirements for next-generation scien-
tific databases. These developments involve areas which at
first glance seem to be distinct and disjoint:

•� Multimedia. In its fullest and most complete form, sci-
entific data is multimedia in nature. It is fully visual,
frequently three-dimensional, and spans the dimen-
sion of time [32]. Much work has focused in this area,
and our work proceeds in a similar direction as in
[31], [38], [12], [27].

•� Simulation and validation. Harreld [27] and Anzai et al.
[3] are evidence of an increasing need to integrate

simulation and database technologies. One potential
benefit of this integration is the capability to validate
simulation data by direct comparison to real-world,
measured data.

•� Timelines. Temporal, evolutionary, and process data
models [15], [13], [35] have many potential applica-
tions in science and medicine. Much of medicine
involves tracking the progress and history of a
patient over time, while a large element of science
is the study of processes and their effects over time.
Scientific and medical timelines present the progress
of a tumor, skeletal development, or other natural proc-
ess as a series of still frames. If properly registered,
timelines may be viewed as a short movie or anima-
tion clip.

The areas addressed by these application domains are
linked by a number of common threads:

•� The element of time. The above application domains
all require data that changes over time: digital
video, simulation data, timelines, etc. A data model
supporting these application domains must be able
to represent, query, and visualize this element of
time. Better yet, this element of time must be cap-
tured in a uniform construct regardless of the time
scale or data type.

•� Complex data structures. Scientific data domains in-
volve objects with complex structures and interrela-
tionships with other objects. In the medical domain,
for example, the Unified Medical Language System
[23] defines a large and complex semantic network
of objects, processes, subjects, synonyms, and rela-
tionships. Current relational data models do not eas-
ily capture and present such complex data without
using artificial or arbitrary keys. A data model that

1041-4347/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� The authors are with the Computer Science Department, School
of Engineering and Applied Science, University of California
at Los Angeles, 3732 Boelter Hall, Los Angeles, CA 90095-1596.
E-mail: dondi@itmedicine.net, cardenas@cs.ucla.edu.

Manuscript received 27 Dec. 1995; revised 7 Aug. 1996.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 104493.

T

DIONISIO AND CÁRDENAS: A UNIFIED DATA MODEL FOR REPRESENTING MULTIMEDIA, TIMELINE, AND SIMULATION DATA 747

takes this structural complexity to a higher level is
thus required.

•� Multiple representations of objects. The multimedia data
generated by a scientific application domain results in
the representation of any individual object in multiple
data areas. For example, a tumor mass may be visible
in multiple CAT scans and MRI scans. It may be
mentioned in multiple lab or radiological reports, an-
notations, or voice transcriptions. Finally, it may be
represented by numerical or tabular simulation data.
A conventional database is capable of storing most of
these data types, but a great deal of work is required
to ensure that the word “tumor” or any concepts re-
lating to it lead to any or all of these means of storage,
and vice versa. Our data model attempts to resolve
these multiple representations by making this concept
a fundamental element of the model.

We address these needs by extending and integrating a
number of data models already in the literature, as dis-
cussed in Section 2.

1.2 Contents of the Paper
After summarizing our model’s primary contributions to
the field in Section 1.3 and comparing related work in
Section 2, we proceed with a review of the basic data mod-
eling concepts upon which our model builds in Section 3.1.

Section 3.2, Section 3.3, Section 3.4, and Section 3.5 de-
scribe the focus of our new model: generalized constructs
for representing various kinds of multimedia and time-
based data. Section 4 outlines the application domains for
which we intend to test its functionality. Section 5 and Sec-
tion 7 provide a hint of things to come by giving an over-
view of the accompanying visual query language which we
are designing.

1.3 Primary Contributions
The primary contributions of our data modeling work to
the field can be described as follows:

•� Generalized multimedia types. We define a general
framework for modeling and accessing various kinds
of multimedia data, including images, sounds, long
text, digital video, and integrated timelines.

•� Generalized model for representing most kinds of time-
based data. In our data model, we have applied a time-
based stream model that is common in multimedia
work to other application domains. In particular, we
use time-based streams to model evolutionary, simu-
lation, and/or timeline data. Collaborative work with
radiologists and clinicians, where prototype software
using our generalized model was developed, has
shown that this unified approach to representing
time-based data results in greater ease of comprehen-
sion and specification of data models containing time-
based entities [2].

Section 3.2, Section 3.3, Section 3.4, and Section 3.5 de-
scribe our data model, focusing on the constructs that spe-
cifically represent these contributions. We have asked users
to both interpret and create different schema diagrams

using our data model. These tests have shown that the new
constructs make it easier for users to specify and express
the multimedia and time-based components of a database.

2 PREVIOUS WORK

We compare our data model to three kinds of data models
that exist today:

1)�multimedia data models
2)�general data models, and
3)�multimedia file formats.

For each data model category, major models have been
selected for comparison with our data model.

2.1 Multimedia Data Models
A number of data models that address the structure and
semantics of multimedia data have been developed. These
multimedia data models emphasize the modeling of im-
ages, sound, or video data. This approach simplifies the
overall problem, because it assumes that a database consists
only of this type of data. To our knowledge, only VIMSYS
provides for a system that exists within the context of a
broader database application, although emphasis remains
within the realm of image data modeling [26].

Our work extends the modeling approach of the Univer-
sity of Geneva [25] with other general database modeling
concepts, and also adds a query language. In addition, the
major application of simulation and scientific computing
extends the timed stream model to cover new areas such as
interpolation and simulation validation. The Amsterdam
Hypermedia Model [28] is extended in our model by add-
ing a general query language and explicit support for
simulation and scientific data. In addition, our work fo-
cuses on multimedia databases, and not on multimedia
hypertext documents.

The M data model is also a superset of the capabilities of
spatio-temporal logic [7] because it integrates spatial and
temporal semantics with more general database constructs.
Support for sound and simulation data is also added. Fi-
nally, we combine the multimedia modeling of time-based
streams with the higher database functionality of VIMSYS
[26], and add explicit support for simulation and scientific
computing to both areas.

A number of more recent models have begun to
tackle the modeling of digital video data. OVID [34],
VideoMAP [40], and the concept of moving icons or “mi-
cons” [41] focus on digitized video and their semantics. The
M data model applies the video-oriented ideas of OVID,
VideoMAP, and micons within its definitions wherever they
are appropriate.

2.2 General Data Models
Many current data models, though not explicitly directed
toward multimedia applications, have a number of con-
structs that will nonetheless support current multime-
dia requirements. M uses the extended entity-relationship
data model (EER) [33] as a basis for basic database con-
cepts such as entities, relationships, and attributes. In addi-
tion, it adds new modeling constructs such as temporal and

748 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 1998

evolutionary relationships, a more explicit implementation
of aggregation, and methods. Most importantly, multime-
dia modeling is incorporated into EER by this work.

The spatial temporal-evolutionary data model (SEDM)
[15], [29] focuses primarily on semantic constructs over still
images. Our model adds a stream construct that models
time within an entity. Further, support for simulation data
models is also added.

The object-oriented predicate calculus (OOPC) [6] pro-
vides a comprehensive model that is applicable to most of
the object-oriented data models and database management
systems that are present today. The M data model combines
the visual effectiveness of EER with the rich constructs of
OOPC to achieve a hybrid model with the advantages of
both EER and OOPC. M’s multimedia types, streams, and
simulation modeling also serve as further enhancements to
the basic framework established by OOPC.

The M data model provides the multimedia data inte-
gration in Jasmine [30] in addition to a rich multimedia
model on a par with stand-alone models. Sound and video
are modeled and integrated, and simulation and scientific
data modeling constructs are added.

2.3 Multimedia File Formats
Multimedia file formats, though not formal data models,
remain important to the field because they represent
the most widespread and standardized means of distrib-
uting multimedia information. The steep requirements of
multimedia data storage and management have given
these file formats a degree of sophistication not previ-
ously found with simpler data types such as relational ta-
bles or text files.

The Moving Picture Experts Group (MPEG) [24] and
QuickTime [4] formats are widely used for storing video
data. They can be used as underlying storage formats for
our higher-level models of digital video.

3 DATA MODEL

Because M is derived from a rich heritage of previous data
modeling work, many of its fundamental notions corre-
spond to current entity-relationship and object-oriented
data models.

It should be noted that the M data model is an evolu-
tion of previous data modeling work by our research
group. It functions as a superset of the constructs described
before. This work includes the image stack data model, pre-
sented in [10].

Further, our stream data model interacts with the tempo-
ral evolutionary data model, or TEDM [15]. As will be dis-
cussed in Section 3.4 and Section 3.5, the combination of
TEDM and our multimedia and stream models results in a
set of constructs that can represent almost any type of tem-
poral data, at varying logical levels.

3.1 Basic Concepts
The basic constructs of our model in graphical notation are
shown in Fig. 1. They define the overall framework of the
data model, synthesized from various data models such as
those in [16], EER [33], OOPC [6], and Jasmine [30].

In general, our basic framework is a synthesis of entity-
relationship (ER) and object-oriented (OO) data models. We
have tried to combine the diagrammatic simplicity of ER
with the richer semantics of OO. In later sections, we ex-
tend the model further with our own new constructs.

Databases and Knowledge Bases. A database is a set of
entities. Each entity consists of attributes, relationships, and
methods. Attributes and relationships describe the struc-
ture, content, and connectivity of an entity, while methods
describe the behavior of that entity.

A knowledge base is a structured repository of in-
formation, similar to a database in function but differing in
content. In general, knowledge bases contain stable or
constant information that can be used as reference or re-
source material. It may be linked to the entities and other
components of a database. Knowledge bases may be
viewed as information resources that describe or char-
acterize the information stored in a database. A knowl-
edge base can take on many representations and for-
malisms. In the specific context of our research, we
have focused on a type abstraction hierarchy representation
of knowledge (see below).

Entities. An entity is the database representation for a par-
ticular object in the real world, generally viewed as the “nouns”
of a database. It is notated as a labeled rectangle. If a data
model diagram contains nonspecific entities (i.e., rectangles
that may represent different kinds of entities), the label
within the entity rectangle is italicized.

Inheritance is the derivation of an entity from another entity.
The inheriting entity (called a subclass) possesses the attrib-
utes, relationships, and methods of its superclass(es). Note
that inheritance is really a special relationship called is a
between the superclass and subclass entities. Our version of
inheritance is semantically identical to the notion of inheri-
tance found in today’s object-oriented systems. It is notated
as a double arrow, with arrowheads pointing toward the
subclass entity.

Aggregation is the composition of one or more entities as com-
ponents of another entity. It is generally used to express a con-
sists of relationship. In Fig. 1, we may interpret A as being
made up of an occurrence of B and C. A is the aggregate and
B and C are its components. Aggregation is notated with a
line that is connected to a circumscribed cross (­) at the
aggregate. No arrowhead is drawn at either the aggregate
or the components.

Methods are encapsulated modules of code that operate within
the context of a particular entity. Our model supports the
specification of methods (or functions) for the different enti-
ties in the database. They are defined and used in this sys-
tem in the same way that they are used in most object-
oriented paradigms and can be applied in ways that will be
familiar to those who use such systems:

•� derivation of on-the-fly, calculated attributes,
•� encapsulation of complex, highly domain-specific

predicates (i.e., a similarity function that is tailored to
a particular entity), and

•� performing of nontrivial processing operations that
require a general programming language.

DIONISIO AND CÁRDENAS: A UNIFIED DATA MODEL FOR REPRESENTING MULTIMEDIA, TIMELINE, AND SIMULATION DATA 749

In M, methods consist of a name, a set of named pa-
rameters and, if defined, a return value. Methods with or
without an associated entity are supported. Methods that
are associated with an entity can only be invoked from
within the context of such an entity. This entity can be
viewed as the performer of that method.

Relationships. Relationships are constructs that define how
different types of entities interact with each other. They are
named using verb expressions (i.e., is a, contains objects,
etc.), and are notated as arrows between the participating
entities. The diagram is read such that the arrowhead
points to the receiver of the relationship: when “A con-
tains objects B,” the arrowhead points to the entity repre-
sented by B.

The degree or cardinality of the relationship among en-
tities may be one-to-one, one-to-many, or many-to-many, and
may involve any number of entities.

Attributes. An attribute is a unit of information that qualifies or
describes the entity to which it is attached. It is notated as a
dotted rectangle whose label states the attribute’s name.

Attributes may be atomic or complex. Atomic attributes
are thought of as the “basic data types” within the system:
numbers, characters, strings, etc. In addition, images and
audio data are also considered atomic in this work.

Complex attributes are attributes whose values are, in
themselves, also entities within the database. They can also
be thought of as nested entities. Thus, these attributes may
have attributes, relationships, and methods of their own.

Attribute atomicity or complexity is not explicitly ex-
pressed by our notation. Further, our notation does not
require that the data type of an attribute be set by the
schema, nor does it indicate whether the attribute is stored
or calculated by a method. Our intention in this design
choice is to provide the user with as simple a view of
the data as possible, without burdening him or her with
details or restrictions such as data types, means of storage
or calculation, etc.

Subschemas. A subschema is a logical subset of a database’s
components that can be encapsulated as a single database node.
The size of a database schema may exceed the size of
the medium on which it is presented (a piece of paper,
a window on the screen, etc.). In this case, the schema
may be broken up into logical pieces. Connections across
schema portions may be indicated by a dotted curve, with
the appropriate arrows or lines indicating how the current
schema is connected to schemas on another page or screen.

Knowledge. Knowledge is information that is stored not in the
database, but in the knowledge base. Thus, knowledge is pre-
cisely the information that was previously described as sta-
ble or constant, and usable as reference or resource mate-
rial. For this work in particular, knowledge is used to de-
scribe or organize the data present in the system.

Within the specific context of our group’s research, we
focus on type abstraction hierarchies as our primary knowl-
edge base construct. Full details on the use of type abstrac-
tion hierarchies and their role in cooperative query proc-
essing may be found in other publications [11], [17], [8].
More advanced forms of type abstraction hierarchies, called
multidimensional type abstraction hierarchies, are used to per-
form query processing of spatial and similarity predicates.
These are explored in [9].

Comments. A comment is descriptive text that does not affect
the structure or content of the database. Comments are gener-
ally used to explain or clarify, for a human reader, certain
portions of a database schema. They are notated as graphi-
cal boxes of italicized text. In an actual schema design envi-
ronment, it may be useful to make the contents of these
comments searchable by the user, to pinpoint sections of
interest in the schema.

3.2 Multimedia Types
A multimedia type is defined as an entity whose content is most
meaningful when it is displayed or presented in a way that is
directly perceivable by the human senses. Images, for example,
are seen; audio is heard; video is both seen and heard. These

Fig. 1. Notational conventions for basic data model constructs.

750 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 1998

special entities form the foundation for the multimedia
functionalities in this data model.

3.2.1 Structure of Multimedia Types
Multimedia types can be viewed as encapsulated “black
boxes” by the user. They can be presented on a screen or a
speaker, assigned to attributes, compared to other values, or
manipulated through predefined operations and/or meth-
ods. Although the actual implementation of such black box
functionality is, internally, much more complex than with
numbers or characters, the user-level view of these opera-
tions remains the same.

If desired, multimedia types also provide a visible inter-
nal structure, illustrated in Fig. 2. This is analogous to our
treatment of the string data type: we can assign, manipu-
late, and work with strings as if they were self-contained
objects, but we can also access individual characters within
a string. Thus, in our model, images and audio data may be
displayed, compared, or manipulated as a whole, while
supplementary information such as image dimensions or
audio frequency are also available.

The structure that we define over a multimedia type
consists of three layers. This structure is similar to the mod-
els that are found in [25], [28], [5], [4]. In our case, the mul-
timedia types are integrated into the overall ER/OO
framework described in Section 3.1 by placing all multime-
dia types under an entity Multimedia Type. The afore-
mentioned structural layers are translated into attributes or
relationships connected to this entity. Our discussion begins
at the lowest, most physical level and focuses on increas-
ingly logical or high-level constructs.

Raw Data. The raw data layer is the low-level, binary repre-
sentation (i.e., file, byte stream, etc.) of a multimedia type: a
raw sequence of bytes without any translation or interpre-
tation. In Fig. 2, the raw data portion of Multimedia Type
is notated as the attribute raw data.

Multimedia Entities and Attributes. The next layer, called
the multimedia entities and attributes layer, describes the
multimedia types such that they may be accessed as actual
database entities. All entities representing a multimedia
type are subclasses of Multimedia Type. Images are mod-
eled either as Image or Image Stack entities,1 audio
samples are Sound entities, digitized video are Video
entities, etc.

The attributes of a multimedia entity are frequently read-
only, in the same way that a text string’s length is read-only.
For instance, you cannot directly assign a text string’s
length, but you can change it indirectly by modifying the
contents of the string.

Fig. 2 presents some common multimedia entities and
their attributes: width, height, and depth for images, or a
transcription attribute for digitized speech.

Related Schema/High Level Data. Our related schema/high
level data layer is similar to the semantic layers found
in VIMSYS [26] and SEDM [29]. Most multimedia types
need to be referenced by content or in terms of other en-
tities (i.e., “Find images with the following tumor,” “Find
speeches that talk about the Gulf War,” etc.). This higher
level, semantic information is captured in logical entities

1. The difference between an image and an image stack is primarily car-
dinality, in that a single image can be thought of as a one-slice image stack.

Fig. 2. Overall structure of a multimedia type, showing the layers which they occupy.

DIONISIO AND CÁRDENAS: A UNIFIED DATA MODEL FOR REPRESENTING MULTIMEDIA, TIMELINE, AND SIMULATION DATA 751

that participate in specific relationships with the entity rep-
resenting a multimedia type.

These entities are collectively labeled as “any entity” in
Fig. 2. “Any entity” represents a set of any related database
entities. These entities are identical to standard database
entities, except that they map to a particular portion of their
underlying multimedia type. For example, a tumor entity,
with standard attributes such as a volume, type, and others,
may also be connected to a region of an MRI image. Note
that in order to be fully effective, this link is two-way—
database entities point to their representative multimedia
types, while multimedia types can list the database entities
that are associated with them.

In Fig. 2, this bidirectional relationship is notated as the
pair of one-to-many relationships contains representations of
and is present in. Any entity in the database may participate
in these relationships. A multimedia type itself may be
viewed as a representation of another multimedia type. An
example would be a thumbnail image which represents a
preview version of a larger picture.

The high-level layer permits us to attach meaningful
constructs to raw images and audio data, and thus permits
us to query multimedia types on a level beyond just pixels
or amplitudes. The use of this more logical level of access
also permits integration with a knowledge base, thus pro-
viding even more contextual information for a user and
serving as a guide when relaxing or modifying a query.

3.2.2 Basic Multimedia Types
Fig. 2 shows examples of the multimedia types that are
common today. Fig. 2 can be expanded in one of two ways:

1)�the addition of new, innovative multimedia types not
currently envisioned by today’s technology, and

2)�the extension of a basic multimedia type (such as any
of those shown in Fig. 2) to satisfy a highly specific
application domain.

We now review the basic multimedia types that we
see as forming the foundation of a multimedia data-
base system.

Long Text. We have found that long text data, such as
medical reports, book or article transcriptions, unstructured
legacy data, etc., is very well-modeled if viewed as a mul-
timedia type. This is due to a number of characteristics that
long text shares with conventional multimedia types: high
information content and/or volume, need for sophisticated
search methods, and frequent interconnection with higher-
level entities. Thus, long text fits very well within the three-
layer structure that is described in the prior section.

Images. Images are the most ubiquitous and deeply re-
searched multimedia types in the literature today. In our
model, images are represented as entities in their own
right. Structurally, they are two-dimensional arrays of pic-
ture elements or pixels, where each dimension is bounded
by the attributes width and height. Each pixel takes up
a particular number of bits, stored in the depth attribute.
The Image entity defines methods for accessing the indi-
vidual pixels of the 2D array. Other methods may also in-
clude filters or transformations, or operations for combina-
tion and convolution.

Subclasses of the Image entity may be defined for
specific purposes or application domains. For example, a
Radiologic Image may be defined, indicating specifically
that a particular image was captured using a radiologic
imaging device.

Image Stacks. An image stack is a logically related set
of images. The model is based on previous work on picto-
rial database systems [10] and is ported into the data model
as shown in Fig. 3. We represent an image stack as an ag-
gregation of slices, each of which is given a unique name
or numerical index within the stack. For example, slices
of a geographical stack may represent elevation, amount
of rainfall, etc., over the region covered by the stack.
Alternatively, an image stack representing a magnetic
resonance imaging (MRI) study may have slices numbered
from 1 to 40.

Sound. Sounds are sequences of amplitude values played
at a particular frequency. In addition to its actual data (a
one-dimensional array of values), a Sound entity’s primary
attributes are its frequency and duration.2

Speech. Speech is a specific type of sound, restricted to
digitized recordings of spoken language. Thus, speech in-
herits the structure and attributes of sound and adds a
number of attributes specific to speech: language,
speaker, and transcription. The transcription at-
tribute to store a textual version of the speech object. The
text may be derived either through manual interpretation
(by a secretary, for example), or through automated speech
recognition.

Video. Digital video is frequently called a composite multi-
media type because it is made of other, simpler multime-
dia types. Digital video consists primarily of two tracks: a vi-
deo track and a sound track. The video track is a sequence
of images that is played back at a high rate to simulate

2. In this document, the term frequency refers not to the specific pitch or
tone of a sound, but the rate at which a sound is digitally sampled.

Fig. 3. The dynamic image stack model as represented in M.

752 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 1998

motion. The sound track is sound data that is synchronized
to produce audio that corresponds to the images on the
video track.

3.3 Intelligent Visual Entities
In this section, we describe a construct that enables a
user to ask questions about data in the most intuitive way
possible—by “showing” the computer what he or she
wants to retrieve.

3.3.1 IVE Definition and Semantics
An intelligent visual entity (IVE) is an entity that stores visual
information about itself in the database schema. This informa-
tion is then used to answer queries that are expressed as
diagrams, sketches, or pictorial examples. Encapsulation is
used to permit different IVEs to employ processing that is
suited specifically to the application domain of each IVE.

Fig. 4 illustrates the special structure and appearance of
an intelligent visual entity. An IVE has two appearances:

1)�as a standard entity (with a special icon to show that
it is an IVE), and

2)�as a graphic “representative” of the instances of that
entity.

In addition, an IVE has further properties that are typically
not seen by a regular user. These properties are set by the
database administrator or designer when defining the IVE.

As an example, consider a medical database that tracks
various lesions within patients suffering from lung cancer.
These lesions come in a wide variety of shapes and sizes,
and may appear in many different locations. Thus, it is of-
ten insufficient for a radiologist to store these lesions based
on artificial attributes such as an ID (i.e., “lesion 1”) or
oversimplified attributes such as a diameter or general lo-
cation (i.e., “right lung,” “left lung,” etc.). Instead, a lesion can

be modeled as an IVE—it is characterized not by alpha num-
eric descriptors but by its visual appearance and spatial
location. The radiologist is thus freed from remembering
these sometimes unintuitive alphanumeric attributes and
can, instead, refer to lesions as “lesions that look like
the one in the current image.” Fig. 5 illustrates how such
a lesion entity may be modeled as an IVE. The left side
of Fig. 5 shows how a database user perceives the IVE,
while the right side shows the internal structure that the
IVE encapsulates.

Internally, an IVE is linked via the relationship has rep-
resentations to a set of instances of multimedia types, the
most common of which would be images. These images
are selected from the database as sufficient visual repre-
sentations of the IVE. It is from these images that an IVE
can choose its graphic appearance, as opposed to the ge-
neric entity-box look. A default representation indicates the
type of display to which the IVE defaults when first pre-
sented to the user. This multiple representation approach is
somewhat analogous to the views in [37], but applied to
multimedia (primarily image) objects as opposed to alpha-
numeric data.

IVEs may also be aggregated into spatial relationship
entities. Placing multiple IVEs under an entity specifically
defined for a spatial relationship permits the database to
store specific query processing methods into that relation-
ship, so that interpreting or comparing relationships can be
tailored to the actual application domain.

Note that the IVE structure complies with the multime-
dia type structure defined in Section 3.2.1. The IVE func-
tions as the high-level, highly logical object, while its spatial
relationships and multimedia types (as accessed by has rep-
resentations) comprise the IVE’s multimedia entities, attrib-
utes, and raw data.

Fig. 4. Structure of an intelligent visual entity.

Fig. 5. Modeling a lesion entity in a database as an IVE.

DIONISIO AND CÁRDENAS: A UNIFIED DATA MODEL FOR REPRESENTING MULTIMEDIA, TIMELINE, AND SIMULATION DATA 753

3.3.2 Usage in Queries
The IVE model was designed specifically to support visual
or by-example queries on objects that can be found in im-
ages, videos, and other multimedia data. Instead of trans-
lating spatial notions such as “looks like,” “near to,” or
“touching” into textual operators (as some other multime-
dia databases do), the user is permitted to express a multi-
media query as is—drawing a desired arrangement or ap-
pearance of objects retrieves the images or other data which
look like that drawing.

Within the MQuery language, visual querying is trig-
gered when one of the images for which the IVE has repre-
sentations is selected as the current representation. The se-
lected image now represents the IVE onscreen, and is used
to make similarity comparisons with other images at query
processing time. When multiple IVEs have been set to use
images as their current representation, MQuery takes into
account their positions relative to each other, and interprets
this position as a desired set of spatial relationships come
query time.

3.4 Streams
The term “stream” is generally used in the multimedia field
to represent time-based data [25]. However, because our
model generalizes this concept to include more that just
multimedia information, the term “sequence” may be used
instead. Typically, data are temporally atomic—viewing or
perceiving them does not take up any time. However, pres-
ent applications are increasingly producing data items that
occupy an interval of time. Obvious examples include dig-
itized sound and video. This section introduces our stream
data model, followed by more detailed semantics in the
next section.

3.4.1 Definitions
A stream is an entity representing an ordered, finite se-
quence of entities, or values. These entities or values are
called elements of the stream. The sequencing is temporal:
elements ei and ej of a stream entity S are distinguished
by i and j being different instances in time. This tempo-
ral ordering is further described by a frequency, indi-
cating the speed by which the elements of the stream travel
through time.

Streams also have the notion of a current time from which
the current element in the sequence can be determined. This
is particularly useful when iterating over a stream’s ele-
ments or when the passage of time is halted within a stream
(i.e., viewing individual frames of a movie loop).

Substreams. A substream is a stream that is itself an ele-
ment of another stream. They break up an overall sequence
into semantically meaningful parts. For example, a stream
that tracks changes in a tumor over time may group the
first five tumor instances as a substream called “Phase A.”
The next seven instances may then be grouped into
“Phase B,” and so forth. Substreams permit our stream data
model to interact with the temporal evolutionary data
model previously defined by our research group [15]. In
terms of digital video, a substream may be thought of
as an individual scene out of an entire video sequence,
and has been referred to as such in the literature [39].

The term “substream” was chosen over “scene” for its great-
er generality, as the term “scene” is too tightly connected to
the area of multimedia and video.

Multistreams. A multistream is an aggregation of streams com-
bined and synchronized to form a new composite stream. The
canonical example for a multistream entity is digitized
video with an associated soundtrack, which is an aggrega-
tion of synchronized video and audio streams. No limita-
tion is placed on the type, frequency, or size of these com-
ponent streams. However, the multistream that aggregates
these streams must take care of managing and synchroniz-
ing their differing sizes, types, and frequencies.

3.4.2 Stream Notation
Fig. 6 illustrates the stream modeling concepts that have
been defined so far. Due to the fact that sequencing or or-
dering is an intrinsic aspect of the data model, a new nota-
tion is introduced for representing a basic stream. Modeling
the component entities as a 1-to-n relationship is not suffi-
cient, because neither of these concepts have a sense of time
or sequence.

To minimize any further notational complexity, the con-
cepts of a substream and multistream build upon the new
stream notation using known constructs. To express a sub-
stream, the elements of a stream are given unique names,
and streams with these names are defined elsewhere in the
diagram. Multistreams are expressed by aggregating sepa-
rate streams into an entity. Multistreams may contain
streams with varying frequencies or element durations,
although this variation is not necessarily seen in the formal
schema notation.

Streams, substreams, and multistreams are all special
kinds of entities that, like standard entities, have attributes,
have relationships with other entities, or participate in an
inheritance (“is-a”) hierarchy. In addition, the elements of a
stream, when they are not substreams, are thought of as
entities also. This permits the elements of a stream to have
attributes, relationships, etc., that are separate from the at-
tributes and relationships of the stream itself.

3.4.3 Practical Applications for Streams
In this section, we discuss the specific application of
streams to a variety of domains. Previous work on this type
of stream data structure has been, in general, applied only
to multimedia data such as digitized video or music [25],
[4], [39], [28]. It has not been framed within the greater
context of a generalized database management system. The
key idea that differentiates our stream work from the
stream work of others in the field is our application of the
same general stream model to a diverse range of domains that
previously have been developed either in isolation of other
subject areas or have not yet been sufficiently modeled in a
database management system.

One of the most significant areas to which we are ap-
plying streams is to data resulting from simulations. The
representation of simulation data into our stream structure
has great potential for scientific database applications, which
need to correlate multiple sets of simulated and real-world
data in many domains.

754 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 1998

Multimedia Types. Streams are highly applicable to mul-
timedia data models. This is due primarily to the intrinsic
temporal element behind such multimedia types as sound
and video.

Sound, for example, has an intrinsic temporal quality.
Sounds cannot be perceived instantaneously—listening to
them always takes some finite amount of time. Thus, they
are well-modeled as streams of samples at a given fre-
quency. This approach permits sound data to be accessed
and presented using the same notation and semantics as
other higher-level streams (timeline histories, simulations,
etc.), and is in fact an illustration of one of the significant
contributions of this work.

Speech, since it is a subclass of sound, is also modeled as
a stream. In addition, its transcription attribute may also be
modeled as a stream, where individual words or even pho-
nemes are sequenced over time. This makes possible que-
ries such as “Retrieve dictations where the speaker men-
tions the word ‘cancer’ within five minutes of the record-
ing.” Although this particular avenue of research is not ex-
plored in depth by our work, it certainly holds interesting

possibilities, and further illustrates the usefulness and ver-
satility of our stream model.

Digital video, like sound and speech, is intrinsically
time-based. An additional level of sophistication is neces-
sary, however, due to the existence of multiple tracks (i.e.,
audio and video) that need to be synchronized during pres-
entation. Thus, digital video is modeled as a multistream.

Simulations. Simulation data are easily represented using
multistreams, managing the many parameters, mathemati-
cal models, geometries, and output sets of a simulated sys-
tem. They also support relationships with real-world meas-
urements and datasets that will aid the user in validating
the accuracy of a simulation.

Simulations generally aggregate two kinds of streams:

1)�a main data stream manages the actual, numeric out-
put of a simulation, while

2)�multiple presentation streams take care of any visu-
alization or presentation of that data.

Thus, the elements of data stream are conventional entities
with alphanumeric attributes, while the elements of the

Fig. 6. Graphical diagram of abstract stream entity types and their internal structures.

DIONISIO AND CÁRDENAS: A UNIFIED DATA MODEL FOR REPRESENTING MULTIMEDIA, TIMELINE, AND SIMULATION DATA 755

presentation streams may include images, three-dimensional
meshes, graphs, or other presentation-oriented objects.

In our model, simulations participate in bidirectional
relationships with two other kinds of entities: logical-level
entities of the objects being simulated, and real-world
measurements or datasets for those simulated objects. Fig. 7
illustrates the many relationships involved among these
three entity types.

For example, a doctor may wish to simulate the behavior
of a cerebral aneurysm. This system involves three types of
database constructs: an entity representing the aneurysm
and its attributes (such as patient ID, aneurysm type, etc.), a
simulation entity that captures the mathematical model and
other data relevant to the aneurysm’s simulation, and a
set of angiograms that represent actual, radiographic foot-
age of the aneurysm in question. The aneurysm simulation

simulates the aneurysm entity, the aneurysm entity is present
in the set of angiograms, while the angiograms themselves
validate the accuracy of the aneurysm simulations. The da-
tabase’s knowledge of the semantics of these complex inter-
relationships will permit the doctor to manage all of this
information in a unified and integrated fashion.

A new and significant aspect of using streams to model
simulation data is the notion of countability. Although ac-
tual, stored simulation data are always discrete sets of val-
ues, the data modeler may choose to present them as if the
data points existed along a continuous flow of time. The no-
tion of being discrete or continuous does not directly affect
the data model, or even the database, since digitally stored
information is always discrete. However, if a continuous
view of data is required, the necessary methods must be
written to provide, perhaps dynamically, any data points

Fig. 7. Graphical data model for a simulation entity.

756 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 1998

that fall between the discrete time slices for which stored
data points exist.

Timelines. Another effective application of streams and
multistreams can be found in the representation and mod-
eling of timelines. In radiology, our group has been explor-
ing the use of timelines to concisely present the overall
history of a patient, including images, reports, and graphs,
in a single view. Fig. 8 illustrates an example of such a
timeline.

Shown is an imaging timeline for thoracic oncology. On
the upper-left corner of the window is a list of patients
retrieved by a database query. A detailed view of the cur-
rently selected patient, including graphs for selected attrib-
utes, is shown to the right of this list. Below this alpha-
numeric data is the timeline multistream itself, di-
vided into two panes. The upper pane is a timeline of im-
ages, showing one stream per lesion identified by the radi-
ologist. The lower pane is a stream of other nonimage
events in the patient’s history. Different icons represent dif-
ferent kinds of events or data, such as a pathology
test, radiological exam, etc.

Our stream-as-timeline model is applicable to diverse
fields such as thoracic oncology and thermal ablation

therapy of brain tumors.3 We have developed a proto-
type system for proof-of-concept, reported in [22]. Like
an individual simulation data set, medical timelines are
modeled as multistreams. Aggregated streams include vari-
ous image streams, report streams, graph streams, and any
number of other data types. Other potential aggregated
streams include annotations, spoken recordings made by
doctors, etc.

Doctors and radiologists have found timelines to be
highly useful at presenting as much information about a
patient as possible with a high degree of organization and
clarity (as reported in [2]). Previous reporting methods ei-
ther lacked the “big picture” view enabled by a timeline or
lacked the amount of detail that most doctors require of
their data.

Temporal Evolutionary Data Model. Temporal and evolu-
tionary constructs, as defined in [15], may also be reformu-
lated using a combination of intelligent visual entities and
streams. Fig. 9 summarizes the new notation for the tempo-
ral evolutionary data model (TEDM).

3. Some readers may view such data, which are sampled at distant points
in time, as versions of the medical image.

Fig. 8. A sample timeline that merges radiological images, reports, and graphs into a single overall view of a given patient.

DIONISIO AND CÁRDENAS: A UNIFIED DATA MODEL FOR REPRESENTING MULTIMEDIA, TIMELINE, AND SIMULATION DATA 757

The overall evolution of an object in TEDM is now cap-
tured in M as a stream or multistream. Stages within the
evolution are translated into named substreams. The ele-
ments of these substreams represent individual instances of
the evolving objects. When the elements of an evolutionary
stage consist of multiple entities, the elements of that stage
are modeled as aggregations of those entities (as can be
seen from the Split Object and Fused Object entities in Fig. 9).
The occurrence of fission and fusion are implied by the or-
dering of the stages—for example, if the elements of one
stage are not aggregated entities and the next stage consists
of aggregations, then the transition from one stage to an-
other is fission.

3.5 Semantics of Streams
In this section, we formalize our stream data model and
the concepts behind stream time. Our perspective of time
views it from within an entity, and thus differs from
other temporal models and algebras [15], [36] which study
time’s characteristics outside of the objects in the database.
These temporal approaches focus on the history, evolution,
or versioning of an object as time passes. With our stream
model, time does not span over multiple separate objects.
Instead, time passes inside an individual stream. Although
a stream does consist of multiple elements, these objects
are encapsulated within a single, larger construct, and can
be manipulated collectively as a single entity instead of
a linked set of entities. These two approaches to time are
not mutually exclusive. They only look at time from differ-
ent points of view.

Our model of time is based primarily on the models
used in timed streams [25] and QuickTime [4]. It has been
adapted so that it can be used for new domains such as
simulation, medical imaging, and scientific computing.

3.5.1 Formal Definitions
A stream is either discrete or continuous, depending on the
quantifiability of its elements.

DEFINITION 1. A discrete stream S is a 6-tuple (f, d, t, nt, n, E)
where:

•� f is the frequency of the stream.
•� d is the duration of the stream.
•� t is the current time of the stream.
•� nt is the stream’s time vector.
•� n is the number of elements in S.
•� E is a sequence e0 to en-1 of elements ei.

In general, f is expressed in hertz (Hz) and its multiples. d,
t, and nt may be expressed in either ticks or seconds. n is a
finite natural number, and ei is as defined below.

DEFINITION 2. A continuous stream S� is a 6-tuple (f, d, t, nt,
a, E) where:

•� f, d, t, and nt are the same as in a discrete stream.
•� a is a domain over which the elements of the stream may

be “indexed.”
•� E is a continuum e(0) to e(a) of elements where e(x)

is a function in [0, a] whose result is an element as de-
fined below.

DEFINITION 3. An element ei or e(x) is a 4-tuple (O, T, R, V) where:

•� O is the index of that element in the stream. In this
definition, O = i for discrete streams or O = x for con-
tinuous streams.

•� T is the tick of that element in the stream.
•� R is the time of that element in the stream.
•� V is the value, or data, stored by that element.

V can be anything from an image or sound sample to
a medical report from a timeline. V can also be another
stream, in which case it is a substream of its owning
stream S.

DEFINIITON 4. A multistream M is a 7-tuple (fM, dM, tM, ntM,
nM, s, s) where:

•� The variables fM to ntM correspond to the variables
for a stream S, except that they are now applied to
the multistream.

Fig. 9. Notational conventions for TEDM constructs.

758 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 1998

•� nM is the number of streams in M.
•� s is a set S0 to SnM −1 of streams Sk.

•� s is an array of start times sk for each stream Sk in s.

For multistreams, the expressions fk, dk, etc., are used to
denote the frequency, duration, or other attribute of the kth
stream in the multistream.

The idea of continuous streams does not strictly contra-
dict the earlier, more intuitive definition of streams as finite
sequences of elements. Streams, after all, are ultimately
stored as digital data, which is necessarily finite as stored.
However, this finite data, through interpolation or dynamic
calculations, can be used to provide the appearance of a con-
tinuous stream.

3.5.2 Time in Streams
The temporal basis of a stream entity is its time scale. A
stream’s time scale determines how the stream measures
time when compared to our own sense of “real time.” The
succeeding sections define the concepts that are associated
with a stream entity’s time scale.

Real time is time as perceived and measured by human
beings. In our model, real time is measured in seconds. All
other temporal units are based on either fractions of or
multiples of a real-time second. Real time is a continuous
time scale, because every point in real time can be defined
and isolated with infinite precision.

Streams measure time in terms of ticks. The passage of
ticks, or stream time, represents a discrete time scale. Within
an individual stream, time cannot be divided into units that
are finer than the duration of an individual tick.

Frequency. Stream ticks are mapped into real-time seconds
by their frequency. A stream’s frequency is the number of ticks
per second. The variable f is used to denote a stream’s fre-
quency, which is often measured in hertz (Hz) and its mul-
tiples. Tick length is the number of seconds between ticks,
and is determined by calculating 1/f. The amount of real
time occupied by t ticks is thus t/f.

Duration. A stream occupies a finite span of time. Thus, it
has a total duration. A stream’s duration is the amount of
time occupied by a stream, and it can be measured either
continuously (in seconds) or discretely (in ticks). As a dis-
crete measure, the duration d is the total number of ticks
spanned by the stream. To convert this value into real time,
d is divided by the stream’s frequency f to arrive at the
number of seconds spanned by a stream (d/f).

Current Time. There are instances when a user or system
must access a stream during a specific point in time. These
instances may occur during the “playback” of a stream, or
when querying its data for a specific event or during a par-
ticular span of time. During these instances, the time value
on which a stream is “focused” is defined as its current time
or t. During playback, for example, a stream’s current time
is set to zero, then incremented at some predefined rate
until it reaches the stream’s duration.

The current time can be expressed either in a stream’s
ticks or in real-time seconds. Stream methods are available
for converting between the two time scales.

Time Vectors. Another concept in time modeling is the no-
tion of a time vector or nt. Time vectors represent the
state of time’s movement within a stream: they express the
direction (forward or backward) and rate (in ticks per sec-
ond) of time’s flow. Time vectors +1 and -1 represent play-
back and reverse playback at the stream’s standard fre-
quency. The special time vector 0 represents a state of “fro-
zen time” within the stream entity.

Start Times. For multistreams, an additional time-related
value called the start time is defined. One start time sk
is defined for each stream in the multistream. The
start time denotes the time in a multistream M for
which a given stream Sk starts to “play.” Thus, if an ele-
ment in a stream occurs t seconds from the beginning of
that stream, it is then invoked at sk + t seconds in relation
to the entire multistream.

3.5.3 Precise Stream Element Access
Three options exist for directly accessing or locating an
entity within a stream: access by order, access by tick, and
access by real time. As we describe these forms of access, let
S represent a given stream. For a discrete stream, n is
the number of individual elements in S. Accessing methods
to continuous streams are analogous to the discrete versions
presented here.

Access By Order. The elements of a stream can be ac-
cessed in terms of their order within the stream. This order
is defined purely by which entity comes before or after
another. The length of time that passes between entities is
not considered.

Access by order is notated as SO(i) for the ith element
within the stream. Clearly, i is strictly an integer, and is de-
fined as ranging from 0 to n - 1. In a database schema,
stream elements have an index attribute that indicates the
element’s position in the overall stream.

Access By Tick. Elements within S can be accessed in terms
of the tick at which an element occurs within S. An element
that occurs at tick j is written as ST(j), where j is an integer
from 0 to d - 1. Because not every tick in S is required to
have a corresponding element, it is possible that ST(j) may
be null. For database access, each stream element has a tick
attribute that returns the value of j for that element.

Access By Real Time. An element of S can also be accessed
in terms of the seconds elapsed between the real-time begin-
ning of the stream and the occurrence of the element. An
element that is accessed in this way is written as SR(t),
where t is a real number ranging from 0 to (d - 1)/f.

The tick j represented by time t is j = t f. As with access
by tick, it is entirely possible that no element occurs pre-
cisely at SR(t). In that case, this expression has a value of
null. A database or query language can access the time at-
tribute to find out a particular element’s timestamp.

3.5.4 Imprecise Stream Element Access
Not every tick (and certainly not every second or fraction
thereof) will have a corresponding element. For example, a
stream S may have an element occurring at the sixth tick,
with the next element not occurring until the ninth tick.
Thus, to be precise, no element exists at ST(7). However, it is

DIONISIO AND CÁRDENAS: A UNIFIED DATA MODEL FOR REPRESENTING MULTIMEDIA, TIMELINE, AND SIMULATION DATA 759

often acceptable to think of an element as “applicable” or
“active” until the next element in the stream comes along.
One such instance is digital video, where a particular frame
remains on display until the next frame comes along. Thus,
an element may be defined to exist at ST(7).

In order to differentiate between precise (with nulls) and
imprecise (without nulls) stream access, braces ({}) are used
to designate imprecise access: for {ST(j)} or {SR(t)}, if no
element exists precisely at ST(j) or SR(t), then the element
returned is the last element that occurred within the stream.
Thus, in the digital video example, {ST(7)} = {ST(8)} = ST(6).

A domain for which imprecise stream access may not
be acceptable is simulation. For example, if a particular simu-
lation run only solved its equations every 10th of a sec-
ond and the state of the system at 0.15 seconds is
desired, returning the values at time = 0.10 seconds may
not be acceptable. In this case, interpolation is the more
desirable approach to returning the state of the stream
at 0.15 seconds.

3.5.5 Stream Quantifiability and Interpolation
The multimedia application of streams can reasonably as-
sume that streams are discrete—in other words, a stream’s
elements are countable, in the mathematical sense. How-
ever, when the notion of streams is expanded to cover other
time-based data, this assumption becomes invalid. For ex-
ample, in the case of simulation data, data points theoreti-
cally exist at every moment over the course of a simulation.
Although it is true that these data points are never all cal-
culated, from a modeling point of view it is incorrect to
view the simulation stream as a discrete sequence of ele-
ments. We thus permit the notion of a continuous stream:
streams which can be accessed only by real time or by tick,
and not by order.

The entire data set of a continuous stream cannot be
stored, so individual elements must be interpolated. The
method of interpolation is very dependent on the applica-
tion domain.

3.5.6 Composition of Multiple Streams
A time scale is only applicable to the specific stream entity
for which it has been defined. Certain types of stream enti-
ties will share identical time scales: CD audio, for example,
or standard NTSC video. However, most streams will have
different time scales, particularly when dealing with simu-
lation data, their visualization, and real measurements on
the simulated object(s). It is thus necessary to look closely at
what is needed in order to properly compose such streams
into an integrated multistream entity.

Translating Times Among Streams. The time stream
translation problem can be stated in this way:

Given streams S and S� with differing time scales, where the current
time in S is given as jS ticks, find jS� in terms of S� ticks such
that in real time, tS = tS� . This translation is a fundamental
step in performing more advanced operations such as synchro-
nization and interpolation.

The translation algorithm is simple and universal. To
determine the amount of real time (in seconds) represented

by a given number of ticks in a given frequency, we have
the expression t = j/f. Therefore, the relationship between
jS and jS� is:

j
f

j
f

S

S

S

S
= ′

′
 (1)

Note that when fS does not divide jS fS� exactly, this equa-
tion will result in a noninteger value for jS�. In this case, a
ceiling or floor function (i.e., ÑjS�á and ÓjS�ã, respectively)
may be necessary, depending on the purpose of the time
stream translation. Alternatively, the system may interpolate
the state of stream S� during that noninteger tick.

Synchronization of Time Among Streams. The need for
synchronization arises when multiple streams with differ-
ing time scales are combined into a single multistream en-
tity. The classic example of such synchronization is digit-
ized video and sound. A video stream with a frequency of
around 30 frames per second must be presented alongside
an audio stream which, at CD-quality levels, can reach fre-
quencies of up to 44,000 Hz.4 The problem of synchroniza-
tion lies in determining what corresponding components of
each stream are simultaneously “active” at any given time.
Inversely, if two events in two separate streams are required
to occur simultaneously when the streams are aggregated
into a multistream, the problem is to determine “when” in
the overall multistream each local stream should start.

Conversion between the time scales of a stream and

its aggregating multistream is straightforward: given Sk

with frequency fk and start time sk, a tick jSk
 is easily trans-

lated into a tick jM of the aggregating multistream M in
this manner:

j s j
LCM f f

fM k S
n

kk

M= + −(. . .)0 1 (2)

Streams and multistreams defer to the approaches
used in QuickTime [4] and the Amsterdam Hypermedia
Model [28] when handling more complicated synchroniza-
tion issues.

3.5.7 Interpolation Within Streams
In addition to synchronization, interpolation is another re-
quirement that may arise from the aggregation of multiple
streams with differing time scales into a single multi-
stream. Interpolation is the calculation of a new element based
on the elements already present within a stream. Specifically, if
the state of a stream is required at a particular time or tick j
and no element occurs (or is valid) precisely at that mo-
ment, interpolation can automatically generate a new ele-
ment for j based on the element that precedes or succeeds
this instant of time.

Our data model’s approach to interpolation is sim-
ple: The ability to interpolate components of a stream
may or not be present in that particular stream. If a
stream entity is capable of interpolation, then it is an in-
terpolation-capable stream, and this capability may either
be enabled or disabled. Note that a continuous stream

4. Recall here that “frequency” in this document refers not to a sound’s
pitch but to the rate at which its waveform has been digitally sampled.

760 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 1998

should always be interpolation-capable. Streams whose
curves are not differentiable in the mathematical sense may
define their own interpolation algorithms for dealing with
any discontinuities.

4 SAMPLE APPLICATION AND PROTOTYPE

In this section, we describe a sample application that takes
advantage of the new constructs presented in this paper,
showing how their use greatly improves the usability and
clarity of a database schema. The application is taken from
the medical domain, and is first defined by its subject mat-
ter and requirements. The prototype that we developed
using M is then presented.

4.1 Domain and Requirements
The example domain presented here is based on a multime-
dia database for thermal ablation therapy that has been
developed by our group [22], [21]. However, we are also
exploring other domains, such as thoracic oncology, though
results are reported elsewhere [2].

Thermal ablation therapy is the use of focal heating for
the treatment of tumors. Techniques for thermal ablation of
brain tumors were pioneered in the 1960s, and have been
further refined since then [18], [1], [3]. The procedure is
particularly important in the treatment of brain tumors,
where invasive surgery is either impossible or poses the
risk of severe brain damage. Using specially designed in-
terventional magnetic resonance instruments, a radiofre-
quency (RF) electrode is directed into the tumor with MR
guidance. Instead of the usual surgical craniotomy expo-
sure, a 2mm twist drill hole is used for access in the skull of
the patient, who remains awake during the procedure.

The sample schema presented in this section maintains
the patient records, models, and images that are relevant to
the thermal ablation therapy application domain. Using the
modeling constructs provided by M, an instantiation of the
schema can store patient records and images, associate
them with each other, and perform queries on this data
based on features such as tumor volume or histology. In
addition, the schema supports simulations of the heat trans-
fer process that occurs during thermal ablation therapy,
mapping these simulations to the appropriate patients
where applicable.

4.2 Discussion of Schema
Fig. 10 shows the overall thermal ablation therapy schema
that we have developed as a testbed for the M data model.
The schema shown is actually a subset of a larger project
between our Computer Science and Radiology Departments.
A broader data model spanning many other areas of medical
imaging is being developed as a part of that larger project.

4.2.1 Patients and Health Care Activities
The standard representation of a patient is shown in
Fig. 10. This representation stores an individual Patient
as an entity participating in the 1-to-n relationship un-
dergoes with a Health Care Activity as its destination.

Patients have attributes such as a patient ID, name, and
many others.

The sample database keeps track of two types of health
care activities: MR Examinations and Thermal Ablation
treatments. MR Examinations generate a set of MRI
(magnetic resonance imaging) scans of the patient’s brain
and tumor. Thus, an MR Image Stack contains representa-
tions of the Patient’s Brain State and any Lesion
States at the time of the examination. This relationship
shows an application of the multimedia type model illus-
trated in Fig. 2. In addition, Brain States and Lesion
States are modeled as intelligent visual entities (IVEs),
because they directly correspond to some visible region of
interest in the MR Image Stack.

Thermal Ablations represent instances of actual ther-
mal ablation procedures performed on the patient. They
include information on the actual ablation procedure,
such as the number of doses applied, whether or not
a biopsy was taken, etc. Measurements tracking the brain’s
temperature are also taken during the procedure, and
so a Thermal Ablation contains a stream of tem-
perature values.

4.2.2 Brain, Lesion, and Temperature Streams
Our stream model is called upon frequently in Fig. 10. In
one instance, as examinations accumulate over time,
individual Brain and Lesion States (essentially snap-
shots at a particular moment in time) are collected into
streams that fully represent the Patient’s Brain and
particular Lesions within the Brain.

The Brain entity belongs to an overall aggregation that
represents the Patient’s anatomical systems (other ana-
tomical systems are not shown in Fig. 10, but may be ex-
plicitly modeled as necessitated by the application domain).
The Lesion entity belongs under one of the pathologic
functions for which a Patient has processes. In this case, it
is a Cerebral Neoplasm disease process which generates
one or more Lesions.

The third use of the stream construct lies in our rep-
resentation of the Temperature entity as a stream of
individual temperature values. Temperature is used in
two places. In the first case, a Thermal Ablation generates
a real-world stream of measurements, thus tracking the
overall temperature of the tissue undergoing thermal
ablation as it changes over time. Second, Temperature is
one of the data streams of a Lesion Simulation. Lesion
Simulations follow our simulation model (as seen in
Fig. 7), capturing the heat transfer equations that theoreti-
cally characterize the thermal ablation process. Thus, in-
stances of Temperature may be directly compared to de-
termine the accuracy of simulated treatments against
measurements taken during actual treatments.

5 QUERY LANGUAGE OVERVIEW

To accompany the data model presented in this paper,
we propose a highly visual query language called MQuery
that directly supports the new and unique concepts in
our data model. MQuery is a next-generation evolution of
the language PICQUERY+ [14]. We provide herein only an

DIONISIO AND CÁRDENAS: A UNIFIED DATA MODEL FOR REPRESENTING MULTIMEDIA, TIMELINE, AND SIMULATION DATA 761

overview of MQuery; a more detailed discussion of the lan-
guage can be found in [19].

Queries with complex predicates (WHERE clause in
an SQL statement) are more conveniently expressed in
a tabular form. Thus, MQuery retains the capability to use
PICQUERY+’s tabular format at the same time as its new
visual constructs.

5.1 Multimedia Data Access: MQuery and Modules
With MQuery, we expand the idea of a query language be-
yond the conventional notion of a pure data retrieval sys-
tem. Instead, the data retrieval functionality is only a mod-
ule of the overall design. Other modules include:

•� Schema designer, browser, and editor (called MSchema).
•� Visual interface for inserting, modifying, retrieving,

and deleting data.
•� Information visualization and presentation.

Thus, MQuery serves as the front end for virtually all
database operations. By interacting with the user during all
phases of database design and manipulation, a high degree
of integration and consistency across all of these stages is
achieved. This level of integration permits features such as

“feedback“ queries¦where any query result or set of re-
sults may be used as input for new queries¦and inten-
sional queries, which permit the user to ask questions about
the schema itself, as opposed to merely its data.

5.2 Query Formulation
The user forms a query in MQuery through a series of
copy-paste actions. With a schema window on one side and
a query window on another side of a display, the user
“copies“ desired schema elements and “pastes“ them onto
the query window. These actions result in the formation of
what resembles a subschema in the query window.

When schema elements are pasted onto a query window,
they can be filled out by the user to satisfy the conditions of
the query. In addition, the desired query results are indi-
cated. This is visually represented by an extra-thick border
around the schema elements that have been designated as
the desired query result. Fig. 11 and Fig. 12 show examples
of visual queries formulated in this manner.

5.3 Sample Queries
The sample queries below have been separated into different
categories in order to highlight selected features of MQuery.

Fig. 10. Sample schema using the M data model for thermal ablation therapy data management.

762 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 1998

Note that these separate query categories can be arbitrarily
mixed and matched to form queries that use more than one
special MQuery feature at a time.

Alphanumeric Queries. Alphanumeric queries are well-
handled by traditional alphanumeric commercial DBMS.
MQuery contributes to this query category by providing a
visual interface that simplifies operations including the
equivalents of joins and subqueries.

Query 1. Display a list of all the patients who are currently in
the database.

Query 2. Display all reports generated concerning patient John
Smith that are dated September 2, 1995, or later.

Both of these queries can be expressed and answered by
the current prototype.

Queries with Multimedia Results. These queries re-
trieve data that are not alphanumeric in nature. They high-
light the multimedia types of the data model, and how they
are closely coupled to the query language. Fig. 11 provides
the MQuery diagram for Query 3.

Query 3. Retrieve radiologic images which contain objects
similar to the ones that I will place onscreen.

Query 4. Play back the voice recordings for images where Dr.
Chan recommends chemotherapy.

Query 5. What are the radiologic/imaging appearances of a
particular pathology?

Query 3 can be expressed and answered by the current
prototype. Query 4 and Query 5 can be expressed in the
language given the right data model, but cannot yet be an-
swered by the current prototype.

Queries with Multimedia Predicates. Multimedia data
can be used in MQuery not only as query results but also as
participants in the actual predicates. The queries below
show predicates that cannot be answered solely from al-
phanumeric information.

Query 6. Obtain the sex, age, and doctor of all patients with
tumors similar in shape to the tumor currently being
viewed.

Query 7. Locate other treated lesions in the database similar
with respect to size, shape, intensity, and growth or
shrink rate of the current case.

Query 8. Does the lesion overlap any of the activated areas from
the functional MRI study?

Query 6 and Query 7 can be expressed and answered by
the current prototype, although better techniques for an-
swering Query 7 are being investigated. Query 8 can be
expressed but not answered by the current prototype.

Fig. 11. MQuery expression for the query “Retrieve radiologic images which contain objects similar to the ones that I will place onscreen.”

Fig. 12. MQuery expression for the query “When does the tissue in the lesion being treated for John Smith on February 9, 1996, become greater
than 60�C?”

DIONISIO AND CÁRDENAS: A UNIFIED DATA MODEL FOR REPRESENTING MULTIMEDIA, TIMELINE, AND SIMULATION DATA 763

Queries Over Time-Based Data. This category of que-
ries highlights how our stream model makes querying over
time-based data simpler and more intuitive. Fig. 12 pro-
vides the MQuery diagram for Query 10.

Query 9. Retrieve and play back the thermal ablation simula-
tion results for patient John Smith for any simula-
tion runs performed after January 10, 1996.

Query 10. When does the tissue in the lesion being treated for
John Smith on February 9, 1996, become greater
than 60�C?

Query 11. How does the shape and volume of the left frontal
lobe tumor of Jane Doe change with respect to time
post therapy?

Query 12. Find all cases in which a tumor decreased in size for
less than three months post treatment, then resumed
a growth pattern after that period.

All of these queries can be expressed in the current
prototype, and all are theoretically answerable. However,
lack of data, particularly in the area of simulations,
has prevented the full implementation of this answering
capability.

Feedback Queries. These queries show how MQuery’s
integrated modules make it simple to pass the results
of one query into another.

Query 13. What are the volumes of the tumors that were re-
trieved in the previous query?

Query 14. Where and when does maximum tissue heating take
place for the simulation run that is currently on
display?

Query 15. List other cases that have a meningioma of similar
size to the case currently being viewed.

Query 16. What are the most up-to-date imaging and therapeu-
tic methods for the pathologies currently displayed
on the screen?

These queries have been specified in the language but
are not yet implemented in the current prototype. Specifi-
cally, linkages among queries and their results have not
yet been implemented.

Queries With Multiple Predicates. A key challenge of a
general query language is to permit the user to express
complex Boolean predicates without detracting from the
languages intuitiveness or usability. The following queries
are intended to test the usability of MQuery’s approach in
expressing Boolean predicates. Fig. 13 provides the MQuery
diagram for Query 17.

Query 17. Find patients who are currently on treatment proto-
cols X or Y whose primary lesions exhibit a decrease
in size by at least 50 percent for every examination
since baseline, or have at least one examination that
exhibits a decrease in size by greater than 75 percent.

Query 18. Find cases which demonstrate a tumor in the pos-
terior fossa adjacent to the dura or next to the fourth
ventricle.

Fig. 13. MQuery expression for the query “Find patients who are currently on treatment protocols X or Y whose primary lesions exhibit a decrease
in size by at least 50 percent for every examination since baseline, or have at least one examination that exhibits a decrease in size by greater
than 75 percent.”

764 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 1998

Queries 17 and 18 can currently be expressed in the
older PICQUERY+ language [14]. A PICQUERY+ compati-
bility module has been partially implemented in the cur-
rent prototype. This module can express these queries
within the newer MQuery environment, but cannot yet
answer them.

5.4 Stream Query Processing
Stream predicates define logical conditions over streams.
There are two types of stream predicates:

1)�Stream entity predicates apply to an overall stream, such
as “streams with more than 100 elements,“ or “streams
over tumors of type X.“ These predicates are no differ-
ent than standard predicates, in that they treat streams
as straightforward, self-contained entities. For exam-
ple, the predicate “performed after January 10, 1996,“
in Query 9 is a stream entity predicate.

2)�Stream element predicates are stated in terms of a
stream’s elements. These predicates are repeatedly
applied to the elements of a stream, returning either
a true or false for each element. The predicate’s re-
sult is a new stream consisting only of those elements
that returned a true value for that predicate. For ex-
ample, “greater than 60oC” in Query 10 is a stream
element predicate.

As stream entity predicates are semantically no different
from standard predicates applied to conventional entities,
the discussion in this paper focuses on stream element
predicates. In addition, the following definitions and results
lead to indices over stored streams in a database, and thus
focus on discrete streams or continuous streams with digi-
tally stored representations (and are therefore discrete
streams at that level).

5.4.1 Streams of Element Index Ranges
Queries 10, 11, 12, and 14 contain examples of stream ele-
ment predicates. The formal definition of a stream element
predicate is given below.

DEFINITION 5. A stream element predicate PS is a Boolean
expression that can be applied to the elements SO(i) ac-
cessed by order from a stream S. PS(SO(i)) is the value of
that predicate for a particular stream element SO(i), which
is either true or false.

DEFINITION 6. Given a stream S = (f, d, t, nt, n, E) and a stream
element predicate PS, the stream predicate result PS{S}
is a stream (fP, dP, tP, ntP, nP, EP) where EP = {e|(e ¶
E) Á PS(e)}.

The query “Retrieve lesions whose tissue temperature is
greater than 60oC,“ which is a slight variation of Query 10,
produces a stream predicate result consisting of lesions
satisfying the stream element predicate “greater than 60oC.”
A stream of element indices can be derived from every
stream predicate result (as in the above example). Further,
consecutive indices can be concatenated into element index
ranges, particularly when a stream element predicate holds
true over an extensive subsequence of stream elements.
This “stream of ranges“ thus constitutes a storable index
over a set of streams. Additional conventional indexing

may then be performed over these sets of ranges, which are,
at this point, composed of scalar values.

DEFINITION 7. Given a stream predicate result PS{S} with ele-
ment set EP as defined previously, a stream of element
indices SI is a stream (fI, dI, tI, ntI, nI, EI) whose element
set EI = {e|e = O"(O, T, R, V) ¶ EP}.

DEFINITION 8. The stream of element indices SI constructed from
a given stream S produces a stream of ranges S[I] such
that the elements (O, T, R, V) of S[I] have V = [Oj ¤ Ok]
where PS(SO(i)) is true "i ¶ [Oj ¤ Ok].

Given S[I] for a particular predicate PS, queries of the
following forms may be answered without having to per-
form a complete scan of every instance of stream S in the
database:

•� Retrieve streams with elements that satisfy PS (such as
the modified Query 10).

•� Retrieve the elements of some stream (perhaps speci-
fied by a stream entity predicate) that satisfy PS (such
as Query 12 and Query 14).

•� Any other query that builds upon elements of a stream
that satisfy the predicate PS (such as Query 17).

The index S[I] can be constructed and maintained as
stream instances are added to the database or deleted from
it. If higher level indices have been constructed over S[I],
these indices must also be maintained as well.

5.4.2 Streams of Satisfied Stream Element Predicates
The creation of streams of ranges S[I] facilitates the querying
of streams based on the truth or falsehood of a single
stream element predicate PS. This approach results in one
index for each predicate PS of interest to the database’s de-
signers and target users. An alternative approach which
constructs one index for a set of predicates is discussed in
this section.

DEFINITION 9. A stream element predicate partition j for
some stream S is a set of stream element predicates PS
such that " elements e of S, PS(e) is true for no more
than one PS ¶ j.

Examples of these predicate partitions include {< x, > x,
= x} where x is some pivotal value (frequently zero, for
streams that track rates of growth) and {= v1, = v2, ¤, = vn}
where {v1, v2, ¤, vn} constitutes a finite range of values
that can be taken on by some attribute of a stream’s ele-
ment. Query 11 and Query 12, which are interested in size
changes, would benefit from such a partition. To index
the growth or shrinkage of a tumor, the predicate partition
{< 0, > 0, = 0} may be used for that tumor’s volume or
size attributes.

The idea behind stream element partitions is to con-
struct, for each stream instance, a sequence of element
ranges for which some predicate in the partition is true.
As with the previous approach, a higher-level index can
then be constructed over these smaller streams of element
ranges to streamline query processing even further.

DEFINITION 10. Given a stream element predicate partition j
for some stream S, a stream of satisfied stream ele-
ment predicates is a stream whose element set Ej

DIONISIO AND CÁRDENAS: A UNIFIED DATA MODEL FOR REPRESENTING MULTIMEDIA, TIMELINE, AND SIMULATION DATA 765

consists of element tuples (Oj, Tj, Rj, Vj) where Vj
= (PS, [Oj ¤ Ok]), with PS ¶ j and [Oj ¤ Ok] is a
range of indices for accesses by order in stream S
such that "SO(o), o ¶ [Oj ¤ Ok], PS(SO(o)) is true.

Query results from Query 12 would form a set of
streams of satisfied stream element predicates. In this case,
the partition j is {� 0, > 0} and the ranges [Oj ¤ Ok] consist
of elements that satisfy the � 0 predicate prior to three
months post treatment, then satisfy > 0 after that.

Note that our definitions permit the condition where no
predicate in j is true for a given element. This possibility is
eliminated by choosing the predicates in j such that PS(e) is
true for one and only one PS ¶ j.

We observe, without presenting the complete (and
lengthy) details, that satisfied stream element predicate
streams are semantically related to the range streams de-
fined in the previous section. Simply put, predicate streams
can be constructed from a set of range streams and vice
versa, as long as the stream element predicates in-
volved satisfy the conditions in Definition 9. Though
this may suggest, conceptually, that both stream indexing
approaches require the same amount of storage and
maintenance, differences in the actual data content of
stream instances may make one approach better than
the other.

6 PROTOTYPE IMPLEMENTATION

We have implemented the data model in this docu-
ment with an interactive, visual schema design tool de-
signed to support the entire M data model specification.
The VisualWorks Smalltalk development environment from
ParcPlace/Digitalk Inc. was used for this prototype.

6.1 Implementation Details
Schema diagrams are committed to a Gemstone database
system, which is being extended in order to accommodate
the more advanced data modeling constructs presented
in this paper. Visualization and presentation can be done
on VisualWorks, but can also use specialized packages
such as IDL (Interactive Data Language) from Research
Systems Inc.

An MQuery prototype has also been developed on the
same platforms. At this point, MQuery can answer simple
visual queries, including the brain and lesion objects for
Query 3 and illustrated in Fig. 11. In PICQUERY+, which
is a tabular and less visual subset of MQuery, we can an-
swer thus far Query 1, Query 2, Query 12, Query 13, and
Query 15.

The thermal ablation therapy application presented
herein is discussed in depth in [21]. The initial data model
and prototype use a subset of the M data model, and can
perform queries on various brain tumors based on size and
rate of growth. Query results are linked to an IDL 3D image
visualization tool. Another major and concurrent effort is in
thoracic oncology, including the necessary data model,
timeline interface, and visualization facilities [2], [22].

6.2 Data Model Evaluation
The data model notation, and software implemented thus
far, has been tested and evaluated by users with varied lev-
els of formal database training (sometimes none at all). This
section provides highlights of the testing process that was
conducted. A full account, including more details and
graphs of the testing results, is provided in a separate
document [20].

Methodology. Users were tested in the areas of schema
comprehension and definition or design. To separate the
data model’s usability from the software’s usability, these
tests were each conducted twice: once using pencil and pa-
per, and again using the software prototype. Hands-on ses-
sions were videotaped for later analysis.

After objective testing concluded, users were given
a questionnaire where they provided subjective reac-
tions to the data model and software. The questionnaire
covered topics ranging from the usability of the data model
to its potential application to real-world problem domains.
Free-text comments were also solicited.

Results. In general, user feedback was very positive, par-
ticularly with regard to the ease of use of the model and
notation and the ease by which multimedia types can be
visualized and understood in schemas diagrammed with
the model. On an objective level, users performed well in
accomplishing the tasks given to them. Interpretations of
schema diagrams were generally accurate and complete, as
were the designs generated by the users with the data
model notation. Subjectively, user responses in the ques-
tionnaire indicated a high degree of satisfaction with the
data model.

7 CONCLUSIONS AND FUTURE WORK

We described the M data model which provides the follow-
ing new constructs: an overall multimedia type model that
organizes all multimedia types under a single hierarchy
and layered structure, intelligent visual entities that are
capable of answering queries on their appearance without
depending on alphanumeric indexing, a stream construct
that unifies data modeling requirements for time-based
information, and a data model for simulation and visuali-
zation that takes advantage of our multimedia and stream
models. Logical schemas defined in M are capable of
capturing multimedia, simulation, temporal, and evolu-
tionary data so that they may be represented, queried,
and visualized.

M has an accompanying query language, MQuery, that
takes advantage of the data model’s special constructs. We
showed examples of the query requirements in a number of
application domains.

We indicate that prototype databases have been de-
signed and implemented for thoracic oncology [2] and
brain tumor thermal ablation therapy [21], illustrating a
number of highlights. We are pursuing further implemen-
tation and use of the features presented in this article;
modules that have been implemented thus far include
schema design and basic querying and visualization. The
schema design module already supports the complete data

766 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 10, NO. 5, SEPTEMBER/OCTOBER 1998

model, including multimedia types, intelligent visual enti-
ties, streams, and simulation.

All told, the data modeling concepts introduced herein
are applicable to a wide variety of domains: multimedia
digital libraries, medical imaging, medical records (via a
visual timeline), engineering or scientific simulations, etc.
Further, this broad set of domains is efficiently served by a
small number of concepts and ideas, particularly multime-
dia types and streams.

Future work includes finalizing the detailed specifica-
tion, implementation, and prototype testing of several parts
of MQuery. MQuery will be visual in nature, and it will take
full advantage of the special constructs defined by our
model. Other research directions include advanced visuali-
zation, new interface paradigms (i.e., gestures, virtual real-
ity, etc.), and the inclusion of hypertext or hypermedia data
into the overall model.

ACKNOWLEDGMENTS

The authors thank the many colleagues, collaborators, and
consultants who have motivated, inspired, and contributed
to this work. Dr. Wesley W. Chu from the Computer Science
Department and Dr. Ricky K. Taira from the Department of
Radiological Sciences are the coprincipal investigators with
Alfonso F. Cárdenas of the UCLA KMeD project. Drs.
Denise R. Aberle, Gary R. Duckwiler, Jonathan Goldin,
Robert B. Lufkin, Michael F. McNitt-Gray, and Fernando
Viñuela of the UCLA School of Medicine have been invalu-
able in developing and evaluating the database require-
ments and proof-of-concept prototypes of real-world medi-
cal applications such as cerebral aneurysm embolization,
thermal ablation therapy, and thoracic oncology imaging.
Portions of this work were supported by grants from the
National Science Foundation.

REFERENCES

[1]� Y. Anzai, A. DeSalles, K. Black, K. Farahani, S. Sinha, D. Castro,
and R.B. Lufkin, “Interventional MRI,“ Radiographics, 1993.

[2]� D.R. Aberle, J.D.N. Dionisio, M.F. McNitt-Gray, R.K. Taira, A.F.
Cárdenas, J.G. Goldin, K. Brown, R.A. Figlin, and W.W. Chu, “In-
tegrated Multimedia Timeline of Medical Images and Data for
Thoracic Oncology Patients,“ Radiographics, vol. 16, no. 3, pp. 669-
681, May 1996.

[3]� Y. Anzai, R.B. Lufkin, A. DeSalles, D.R. Hamilton, K. Farahani,
and K.L. Black, “Preliminary Experience with MR-Guided Ther-
mal Ablation of Brain Tumors,“ Am. J. Neuroradiology, vol. 16,
no. 1, pp. 39-48 (discussion, pp. 49–52), Jan. 1995.

[4]� Apple Computer, “QuickTime,“ Inside Macintosh, Addison-
Wesley, 1993.

[5]� E. Bertino, M. Damiani, and P. Randi, ”An Approach to Inte-
grate Multimedia Data in a Knowledge Representation System,”
T. Catarci, M.F. Costabile, and S. Levialdi, eds., Proc. Int’l Workshop
Advanced Visual Interfaces, pp. 109-123, Rome, World Scientific,
May 1992.

[6]� E. Bertino, M. Negri, G. Pelagatti, and L. Sbattella, ”Object-
Oriented Query Languages: The Notion and the Issues,” IEEE
Trans. Knowledge and Data Eng., vol. 4, no. 3, pp. 223-237, June
1992.

[7]� A. Del Bimbo, E. Vicario, and D. Zingoni, ”Symbolic Description
and Visual Querying of Image Sequences Using Spatio-Temporal
Logic,” IEEE Trans. Knowledge Data Eng., vol. 7, no. 4, pp. 609-622,
1995.

[8]� W.W. Chu and Q. Chen, ”A Structured Approach for Cooperative
Query Answering,” IEEE Trans. Knowledge and Data Eng, vol. 6,
no. 5, pp. 738-749, Oct. 1994.

[9]� W.W. Chu and K. Chiang, ”Abstraction of High Level Concepts
from Numerical Values in Databases,” Proc. AAAI Workshop
Knowledge Discovery in Databases, 1994.

[10]� M. Chock, A.F. Cárdenas, and A. Klinger, ”Manipulating Data
Structures in Pictorial Information Systems,” Computer, pp. 43-50,
Nov. 1981.

[11]� W.W. Chu, Q. Chen, R.-C. Lee, ”Cooperative Query Answering
via Type Abstraction Hierarchy,” S.M. Deen, ed., Cooperating
Knowledge Based Systems, Elsevier, 1990.

[12]� Workshop Advances in Data Management for the Scientist and Engi-
neer, W.W. Chu, A.F. Cárdenas and R.K. Taira, eds., National Sci-
ence Foundation, Boston, Feb. 1993.

[13]� W.W. Chu, A.F. Cárdenas, and R.K. Taira, ”KMeD: A Knowledge-
Based Multimedia Medical Distributed Database System,” Infor-
mation Systems, vol. 20, no. 2, pp. 75-96, 1995.

[14]� A.F. Cárdenas, I.T. Ieong, R.K. Taira, R. Barker, and C.M. Breant,
”The Knowledge-Based Object-Oriented PICQUERY+ Language,”
IEEE Trans. Knowledge and Data Eng., vol. 5, no. 4, pp. 644-657,
Aug. 1993.

[15]� W.W. Chu, I.T. Ieong, R.K. Taira, and C.M. Breant, ”A Temporal
Evolutionary Object-Oriented Data Model and its Query Lan-
guage for Medical Image Management,” L.-Y. Yuan, ed., Proc. 18th
Int’l Conf. Very Large Databases, pp. 53-64, Vancouver, Canada,
Morgan Kaufmann, Aug. 1992.

[16] Research Foundations in Object-Oriented and Semantic Database Sys-
tems, A.F. Cárdenas and Dennis McLeod, eds., Prentice Hall, 1990.

[17] W.W. Chu, M.A. Merzbacher, and L. Berkovich, “The Design and
Implementation of CoBase,” Proc. ACM SIGMOD, pp. 517-522,
Washington, D.C., 1993.

[18] D. Castro, R.E. Saxton, and R.B. Lufkin, “Interstitial Photoablative
Laser Therapy Guided by Magnetic Resonance Imaging for the
Treatment of Deep Tumors,” Seminars of Surgical Oncology, vol. 8,
pp. 233–241, 1992.

[19] J.D.N. Dionisio and A.F. Cárdenas, “MQuery: A Visual Query
Language for Multimedia, Timeline, and Simulation Data,” J. Vis-
ual Languages and Computing, vol. 7, pp. 377-401, 1996.

[20] J.D.N. Dionisio and A.F. Cárdenas, A Methodology for User Evalua-
tion of Visual Schema Designers and Query Languages, under review,
1998.

[21] J.D.N. Dionisio, A.F. Cárdenas, R.B. Lufkin, K.L. Black, R.K. Taira,
and W.W. Chu, “A Multimedia Database System for Thermal Ab-
lation Therapy of Brain Tumors,” J. Digital Imaging, vol. 10, no. 1,
pp. 21-26, Feb. 1997.

[22] J.D.N. Dionisio, A.F. Cárdenas, R.K. Taira, D.R. Aberle, W.W. Chu,
M.F. McNitt-Gray, J.G. Goldin, and R.B. Lufkin, “A Unified Time-
line Model and User Interface for Multimedia Medical Data-
bases,” Computerized Medical Imaging and Graphics, vol. 20, no. 4,
1996.

[23] Dept. of Health and Human Services, National Institutes of
Health, National Library of Medicine, UMLS Knowledge Sources,
Aug. 1992.

[24] D. Le Gall, “MPEG: A Video Compression Standard for Multime-
dia Applications,” Comm. ACM, vol. 34, no. 4, pp. 46-58, Apr.
1991.

[25] S. Gibbs, C. Breiteneder, and D. Tsichritzis, “Data Modeling of
Time-Based Media,” D. Tsichritzis, ed., Visual Objects, pp. 1-22,
Centre Universitaire d’Informatique, Univ. of Geneva, 1993.

[26] A. Gupta, T. Weymouth, and R. Jain, “Semantic Queries with
Pictures: The VIMSYS Model,” G.M. Lohman, A. Sernadas, and R.
Camps, eds., Proc. 17th Int’l Conf. Very Large Databases, pp. 69-79,
Barcelona, Spain, Very Large Data Base Endowment, Morgan
Kaufman, Sept. 1991.

[27] M.R. Harreld, “Brain Aneurysm Blood Flow: Modeling, Simula-
tion, VR Visualization,” PhD thesis, Univ. of California, Los An-
geles, 1996.

[28] L. Hardman, D.C.A. Bulterman, and G. van Rossum, “The Am-
sterdam Hypermedia Model: Adding Time and Context to the
Dexter Model,” Comm. ACM, vol. 37, no. 2, pp. 50-63, Feb. 1994.

[29] I.T. Ieong, “Data Modeling and Query Processing for Image Man-
agement,” PhD thesis, Univ. of California, Los Angeles, 1993.

[30] H. Ishikawa, F. Suzuki, F. Kozakura, A. Makinouchi, M. Mi-
yagishima, Y. Izumida, M. Aoshima, and Y. Yamane, “The Model,
Language, and Implementation of an Object-Oriented Multimedia
Knowledge Base Management System,” ACM Trans. Database Sys-
tem, vol. 18, no. 1, pp. 1-50, Mar. 1993.

[31] Proc. NSF Workshop Visual Information Management Systems, R. Jain,
ed., Feb. 1992.

DIONISIO AND CÁRDENAS: A UNIFIED DATA MODEL FOR REPRESENTING MULTIMEDIA, TIMELINE, AND SIMULATION DATA 767

[32] P.R. Keller and M.M. Keller, Visual Cues: Practical Data Visualiza-
tion, IEEE CS Press, Los Alamitos, Calif., 1993.

[33] V.M. Markowitz and A. Shoshani, “Representing Extended
Entity-Relationship Structures in Relational Databases: A Modu-
lar Approach,” ACM Trans. Database Systems, vol. 17, no. 3, pp.
423-464, Sept. 1992.

[34] E. Oomoto and K. Tanaka, “OVID: Design and Implementation of
a Video-Object Database System,” IEEE Trans. Knowledge and Data
Eng., vol. 5, no. 4, pp. 629-643, Aug. 1993.

[35] J.M. Pratt and M. Cohen, “A Process-Oriented Scientific Database
Model,” SIGMOD Record, vol. 21, no. 3, pp. 17-25, Sept. 1992.

[36] E. Rose and A. Segev, “A Temporal Object-Oriented Algebra and
Data Model,” technical report, Lawrence Berkeley Lab., June 1992.

[37] E. Sciore, “Object Specialization,” ACM Trans. Information Systems,
vol. 7, no. 2, pp. 103-122, Apr. 1989.

[38] M. Stonebraker, J. Chen, N. Nathan, C. Paxson, and J. Wu, “Tioga:
Providing Data Management Support for Scientific Visuali-
zation Applications,” Proc. 19th Int’l Conf. Very Large Databases,
R. Agrawal, S. Baker, and D. Bell, eds., pp. 25–38, Dublin, Ireland,
Very Large Data Base Endowment, Morgan Kaufmann, Sept.
1993.

[39] D. Swanberg, C.-F. Shu, and R. Jain, “Knowledge Guided Parsing
in Video Databases, Proc. Symp. Electronic Imaging: Science and
Technology, K.T. Knox and E. Granger, eds., San Jose, Calif., Soc.
for Imaging Science and Technology and International Soc. for
Optical Engineering, Jan.-Feb. 1993.

[40] Y. Tonomura, A. Akutsu, K. Otsuji, and T. Sadakata, “VideoMAP
and VideoSpaceIcon: Tools for Anatomizing Video Content,” Proc.
INTERCHI, S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel,
and T. White, eds., pp. 131-136, Amsterdam, ACM, Apr. 1993.

[41] H. Ueda, T. Miyatake, S. Sumino, and A. Nagasaka, “Automatic
Structure Visualization for Video Editing,” Proc. INTERCHI,
S. Ashlund, K. Mullet, A. Henderson, E. Hollnagel, and T. White,
eds., pp. 137-141, Amsterdam, ACM, Apr. 1993.

John David N. Dionisio received his PhD de-
gree in computer science at the University of
California at Los Angeles in 1996. His disserta-
tion, “An Integrated Data Model, Language, and
User Interface for Knowledge, Multimedia, and
Simulations,” is based on multimedia database
modeling and query languages, with particular
interest in the medical domain. As a graduate
student researcher, he was a member of the
Knowledge-Based Multimedia Medical Distrib-
uted Database (KMeD) development team headed

by Wesley W. Chu, Alfonso F. Cárdenas, and Ricky K. Taira. He is now
the director of technology of the Telemedicine/ITMedicine Division of
the Department of Radiological Sciences at UCLA. He is a member of
the ACM, and has been inducted into the Pi Mu Epsilon mathematics
honor society, the Alpha Sigma Nu Jesuit honor society, and the Tau
Beta Pi engineering honor society.

Alfonso F. Cárdenas received the BS degree
from San Diego State University, and the MS
and PhD degrees in computer science from the
University of California at Los Angeles in 1969.
He is now a professor in the Computer Science
Department of the School of Engineering and
Applied Sciences at UCLA, and a consultant in
computer science and management for the Com-
putomata International Corporation. His major
areas of research interest include database
management, distributed multimedia (text, im-

age/picture, voice) systems, information systems planning and devel-
opment methodologies, and software engineering automation. He has
been a consultant to users and vendors of hardware and software
technology. He has served as chair and a member of organizational
and program committees for many conferences, and has led many
seminars and spoken before audiences in various countries. He is
past-president of the Board of Trustees of the Very Large Data Base
Endowment. He has been a member of review boards for the National
Science Foundation, the National Institutes of Health, and various
other institutions. He has authored numerous articles, and authored
and/or edited three books.

